
Inter-Domain Policy Routing Working Group M. Steenstrup

Internet Draft BBN Communications

March 1992

IDPR as a Proposed Standard

Executive Summary

The IDPR working group of the IETF is submitting to the IESG, for consideration as a proposed

standard, the set of protocols and procedures that compose inter-domain policy routing (IDPR). In ac-

cordance with the requirements stipulated by RFC 1264, we present justification for proposed standard

status of IDPR.

The objective of IDPR is to construct and maintain routes between source and destination adminis-

trative domains, that provide user traffic with the services requested within the constraints stipulated for

the domains transited.

Four documents describe IDPR in detail:

1. M. Lepp and M. Steenstrup. An architecture for inter-domain policy routing. Internet Draft. March

1992.

2. M. Steenstrup. Inter-domain policy routing protocol specification: version 1. Internet Draft. March

1992.

3. H. Bowns and M. Steenstrup. Inter-domain policy routing configuration and usage. Internet Draft.

March 1992.

4. R. Woodburn. Definitions of managed objects for inter-domain policy routing (version 1). Internet

Draft. March 1992.

We request that neither the MIB nor the configuration guide be considered for proposed standard status

at this time. Instead, we will submit these documents for proposed standard consideration, after we have

gained more experience in using both the MIB and the configuration guide.



Proposed Standard IDPR March 1992

1 The Internet Environment

As data communications technologies evolve and user populations grow, the demand for internetworking

increases. The Internet currently comprises over 4000 operational networks and over 10,000 registered

networks. In fact, for the last several years, the number of constituent networks has approximately

doubled annually. Although we do not expect the Internet to sustain this growth rate, we must prepare

for the Internet of five to ten years in the future.

Internet connectivity has increased along with the number of component networks. Internetworks

proliferate through interconnection of autonomous, heterogeneous networks administered by separate

authorities. We use the term administrative domain (AD) to refer to any collection of contiguous networks,

gateways, links, and hosts governed by a single administrative authority that selects the intra-domain

routing procedures and addressing schemes, defines service requirements for locally-generated traffic,

and specifies service restrictions for transit traffic.

In the early 1980s, the Internet was purely hierarchical, with the ARPANET as the single back-

bone. The current Internet possesses a semblance of a hierarchy in the collection of backbone, regional,

metropolitan, and campus domains that compose it. However, technological, economical, and political

incentives have prompted the introduction of inter-domain links outside of those in the strict hierarchy.

Hence, the Internet has the properties of both hierarchical and mesh connectivity.

We expect that, over the next five years, the Internet will grow to contain O(10) backbone domains,

most providing connectivity between many source and destination domains and offering a wide range of

qualities of service, for a fee. Most domains will connect directly or indirectly to at least one Internet

backbone domain, in order to communicate with other domains. In addition, some domains may install

direct links to their most favored destinations. Domains at the lower levels of the hierarchy will provide

some transit service, limited to traffic between selected sources and destinations. However, the majority

of Internet domains will be stubs, that is, domains that do not provide any transit service for any other

domains but that connect directly to one or more transit domains.

The bulk of Internet traffic will be generated by hosts in the stub domains, and thus, the applications

running in these hosts will determine the traffic service requirements. We expect application diversity

encompassing electronic mail, desktop videoconferencing, scientific visualization, and distributed simula-

tion, for example. Many of these applications have strict requirements on delivery, delay, and bandwidth.

In such a large and heterogeneous Internet, the routing procedures must be capable of ensuring

that traffic is forwarded along routes that offer the required services without violating domain usage

restrictions. We believe that IDPR meets this goal; it has been designed to accommodate an Internet

comprising O(104) administrative domains with diverse service offerings and requirements.

1



Proposed Standard IDPR March 1992

2 An Overview of IDPR

IDPR generates, establishes, and maintains policy routes that satisfy the service requirements of the users

and respect the service restrictions of the transit domains. Policy routes are constructed using information

about the services offered by and the connectivity between administrative domains and information about

the services requested by the users.

2.1 Policies

With IDPR, each domain administrator sets transit policies that dictate how and by whom the resources

in its domain should be used. Transit policies are usually public, and they specify offered services

comprising:

Access restrictions: e.g., applied to traffic to or from certain domains or classes of users.

Quality: e.g., delay, throughput, or error characteristics.

Monetary cost: e.g., charge per byte, message, or session time.

Each domain administrator also sets source policies for traffic originating in its domain. Source policies

are usually private, and they specify requested services comprising:

Access restrictions: e.g., domains to favor or avoid in routes.

Quality: e.g., acceptable delay, throughput, and reliability.

Monetary cost: e.g., acceptable cost per byte, message, or session time.

2.2 Functions

The basic IDPR functions include:

1. Collecting and distributing routing information, i.e., domain transit policy and connectivity infor-

mation. IDPR uses link state routing information distribution, so that each source domain may

obtain routing information about all other domains.

2. Generating and selecting policy routes based on the routing information distributed and on source

policy information. IDPR gives each source domain complete control over the routes it generates.

2



Proposed Standard IDPR March 1992

3. Setting up paths across the Internet, using the policy routes generated.

4. Forwarding messages across and between administrative domains along the established paths. IDPR

uses source-specified message forwarding, giving each source domain complete control over the

paths traversed by its hosts’ traffic.

5. Maintaining databases of routing information, inter-domain policy routes, forwarding information,

and configuration information.

2.3 Entities

Several different entities are responsible for performing the IDPR functions:

1. Policy gateways, the only IDPR-recognized connecting points between adjacent domains, col-

lect and distribute routing information, participate in path setup, maintain forwarding information

databases, and forward data messages along established paths.

2. Path agents, resident within policy gateways, act on behalf of hosts to select policy routes, to set

up and manage paths, and to maintain forwarding information databases. Any Internet host can

reap the benefits of IDPR, as long as there exists a path agent willing to act on its behalf and a

means by which the host’s messages can reach that path agent.

3. Special-purpose servers maintain all other IDPR databases as follows:

(a) Each route server is responsible for both its database of routing information, including domain

connectivity and transit policy information, and its database of policy routes. Also, each

route server generates policy routes on behalf of its domain, using entries from its routing

information database and using source policy information supplied through configuration or

obtained directly from the path agents. A route server may reside within a policy gateway,

or it may exist as an autonomous entity. Separating the route server functions from the

policy gateways frees the policy gateways from both the memory intensive task of routing

information database and route database maintenance and the computationally intensive task

of route generation.

(b) Each mapping server is responsible for its database of mappings that resolve Internet names

and addresses to administrative domains. The mapping server function can be easily integrated

into an existing name service such as DNS.

(c) Each configuration server is responsible for its database of configured information that applies

to policy gateways, path agents, and route servers in the given administrative domain. Con-

figuration information for a given domain includes source and transit policies and mappings

3



Proposed Standard IDPR March 1992

between local IDPR entities and their addresses. The configuration server function can be

easily integrated into a domain’s existing network management system.

2.4 Message Handling

There are two kinds of IDPR messages:

1. Data messages containing user data generated by hosts.

2. Control messages containing IDPR protocol-related control information generated by policy gate-

ways and route servers.

Within the Internet, only policy gateways and route servers must be able to generate, recognize, and

process IDPR messages. Mapping servers and configuration servers perform necessary but ancillary

functions for IDPR, and they are not required to execute IDPR protocols. The existence of IDPR is

invisible to all other gateways and hosts. Using encapsulation across each domain, an IDPR message

tunnels from source to destination across the Internet through domains that may employ disparate intra-

domain addressing schemes and routing procedures.

4



Proposed Standard IDPR March 1992

3 Security

IDPR contains mechanisms for verifying message integrity and source authenticity and for protecting

against certain types of denial of service attacks. It is particularly important to keep IDPR control

messages intact, because they carry control information critical to the construction and use of viable

policy routes between domains.

3.1 Integrity and Authenticity

All IDPR messages carry a single piece of information, referred to in the IDPR documentation as the

integrity/authentication value, which may be used not only to detect message corruption but also to

verify the authenticity of the message’s source IDPR entity. The Internet coordinator specifies the set of

valid algorithms which may be used to compute the integrity/authentication values. This set may include

algorithms that perform only message integrity checks such as n-bit cyclic redundancy checksums (CRCs),

as well as algorithms that perform both message integrity and source authentication checks such as signed

hash functions of message contents.

Each domain administrator is free to select any integrity/authentication algorithm, from the set speci-

fied by the Internet coordinator, for computing the integrity/authentication values contained in its domain’s

messages. However, we recommend that IDPR entities in each domain be capable of executing all of the

valid algorithms so that an IDPR message originating at an entity in one domain can be properly checked

by an entity in another domain.

IDPR control messages must carry a non-null integrity/authentication value. We recommend that

control message integrity/authentication be based on a digital signature algorithm, such as MD5, which

simultaneously verifies message integrity and source authenticity. The digital signature may be based

on either public key or private key cryptography. However, we do not require that IDPR data messages

carry a non-null integrity/authentication value. In fact, we recommend that a higher layer (end-to-end)

procedure assume responsibility for checking the integrity and authenticity of data messages, because of

the amount of computation involved.

3.2 Timestamps

Each IDPR message carries a timestamp (expressed in seconds elapsed since 1 January 1970 0:00 GMT)

supplied by the source IDPR entity, which serves to indicate the age of the message. IDPR entities use

the absolute value of a timestamp to confirm that the message is current and use the relative difference

between timestamps to determine which message contains the most recent information. All IDPR entities

5



Proposed Standard IDPR March 1992

must possess internal clocks that are synchronized to some degree, in order for the absolute value of a

message timestamp to be meaningful. The synchronization granularity required by IDPR is on the order

of minutes and can be achieved manually.

Each IDPR recipient of an IDPR control message must check that the message’s timestamp is in the

acceptable range. A message whose timestamp lies outside of the acceptable range may contain stale or

corrupted information or may have been issued by a source whose clock has lost synchronization with

the message recipient. Such messages must therefore be discarded, to prevent propagation of incorrect

IDPR control information. We do not require IDPR entities to perform a timestamp acceptability test for

IDPR data messages, but instead leave the choice to the individual domain administrators.

6



Proposed Standard IDPR March 1992

4 Size Considerations

IDPR provides policy routing among administrative domains and has been designed to accommodate an

Internet containing tens of thousands of domains, supporting diverse source and transit policies.

In order to construct policy routes, route servers require routing information at the domain level only;

no intra-domain details need be included in IDPR routing information. Thus, the size of the routing

information database maintained by a route server depends only on the number of domains and transit

policies and not on the number hosts, gateways, or networks in the Internet.

We expect that, within a domain, a pair of IDPR entities will normally be connected such that when

the primary intra-domain route fails, the intra-domain routing procedure will be able to use an alternate

route. In this case, a temporary intra-domain failure is invisible at the inter-domain level. Thus, we

expect that most intra-domain routing changes will be unlikely to force inter-domain routing changes.

Policy gateways distribute routing information only when detectable inter-domain changes occur and

may also elect to distribute routing information periodically as a backup. Thus, policy gateways do not

often need to generate and distribute routing information messages, and the frequency of distribution of

these messages depends only weakly on intra-domain routing changes.

IDPR entities rely on intra-domain routing procedures operating within domains to transport inter-

domain messages across domains. Hence, IDPR messages must appear well-formed according to the

intra-domain routing procedures and addressing schemes in each domain traversed; this requires appro-

priate header encapsulation of IDPR messages at domain boundaries. Only policy gateways and route

servers must be capable of handling IDPR-specific messages; other gateways and hosts simply treat

the encapsulated IDPR messages like any other. Thus, for the Internet to support IDPR, only a small

proportion of Internet entities require special IDPR software.

With domain-level routes, many different traffic flows may use not only the same policy route but also

the same path, as long their source domains, destination domains, and requested services are identical.

Thus, the size of the forwarding information database maintained by a policy gateway depends on the

number of domains and source policies and not on the number of hosts in the Internet. Moreover, memory

associated with failed, expired, or disused paths can be reclaimed for new paths, and thus forwarding

information for many paths can be accommodated.

7



Proposed Standard IDPR March 1992

5 Interactions with Other Inter-Domain Routing Procedures

We believe that many Internet domains will benefit from the introduction of IDPR. However, the decision

to support IDPR in a given domain is an individual one, left to the domain administrator; not all domains

must support IDPR.

Within a domain that supports IDPR, other inter-domain routing procedures, such as BGP and EGP,

can comfortably coexist. Each inter-domain routing procedure is independent of the others. The domain

administrator determines the relationship among the inter-domain routing procedures by deciding which

of its traffic flows should use which inter-domain routing procedures and by configuring this information

for use by the policy gateways.

Hosts in stub domains may have strict service requirements and hence will benefit from the policy

routing provided by IDPR. However, the stub domain itself need not support IDPR in order for its

traffic flows to use IDPR routes. Instead, a proxy domain may perform IDPR functions on behalf of

the stub. The proxy domain must be reachable from the stub domain according to an inter-domain

routing procedure independent of IDPR. Administrators of the stub and potential proxy domains mutually

negotiate the relationship. Once an agreement is reached, the administrator of the stub domain should

provide the proxy domain with its hosts’ service requirements.

IDPR policy routes must traverse a contiguous set of IDPR domains. Hence, the degree of IDPR

deployment in transit domains will determine the availability of IDPR policy routes for Internet users. For

a given traffic flow, if there exists no contiguous set of IDPR domains between the source and destination,

the traffic flow relies on an alternate inter-domain routing procedure to provide a route. However, if there

does exist a contiguous set of IDPR domains between the source and destination, the traffic flow may

take advantage of policy routes provided by IDPR.

6 Implementation Experience

To date, there exist two implementations of IDPR: one an independent prototype and the other an integral

part of the gated UNIX process. We describe each of these implementations and our experience with

them in the following sections.

6.1 The Prototype

During the summer of 1990, the IDPR development group consisting of participants from USC, SAIC,

and BBN began work on a UNIX-based software prototype of IDPR, designed for implementation in

8



Proposed Standard IDPR March 1992

Sun workstations. This prototype consisted of multiple user-level processes to provide the basic IDPR

functions together with kernel modifications to speed up IDPR data message forwarding.

Most, but not all, of the IDPR functionality was captured in the prototype. In the interests of producing

working software as quickly as possible, we intentionally left out of the IDPR prototype support for source

policies and for multiple policy gateways connecting two domains. This simplified configuration and route

generation without compromising the basic functionality of IDPR.

The IDPR prototype software was extensively instrumented to provide detailed information for mon-

itoring its behavior. The instrumentation allowed us to detect events including but not limited to:

1. Change in policy gateway connectivity to adjacent domains.

2. Change in transit policies configured for a domain.

3. Transmission and reception of link state routing information.

4. Generation of policy routes, providing a description of the actual route.

5. Transmission and reception of path control information.

6. Change of path state, such as path setup or teardown.

With the extensive behavioral information available, we were able to track most events occurring in our

test networks and hence determine whether the prototype software provided the expected functionality.

6.1.1 Test Networks

In February 1991, the IDPR development group began experimenting with the completed IDPR pro-

totype software. Each IDPR development site had its own testing environment, consisting of a set of

interconnected Sun workstations, each workstation performing the functions of a policy gateway and

route server:

� USC used a laboratory test network consisting of SPARC1+ workstations, each pair of workstations

connected by an Ethernet segment. The topology of the test network could be arbitrarily configured.

� SAIC used Sun3 workstations in networks at Sparta and at MITRE. These two sites were connected

through Alternet using a 9.6kb SLIP link and through an X.25 path across the DCA EDN testbed.

� BBN used SPARC1+ workstations at BBN and ISI connected over both DARTnet and TWBnet.

9



Proposed Standard IDPR March 1992

6.1.2 Experiments

The principal goal of our experiments with the IDPR prototype software was to provide a proof of

concept. In particular, we set out to verify that the IDPR prototype software was able to:

1. Monitor connectivity across and between domains.

2. Update routing information when inter-domain connectivity changed or when new transit policies

were configured.

3. Distribute routing information to all domains.

4. Generate acceptable policy routes based on current link state routing information.

5. Set up and maintain paths for these policy routes.

6. Tear down paths that contained failed components, supported stale policies, or attained their max-

imum age.

Furthermore, we wanted to verify that the IDPR prototype software quickly detected and adapted to those

events that directly affected policy routes.

The internetwork topology on which we based most of our experiments consisted of four distinct

administrative domains connected in a ring. Two of the four domains served as host traffic source and

destination, AD S and AD D respectively, while the two intervening domains provided transit service

for the host traffic, AD T1 and AD T2. AD S and AD D each contained a single policy gateway that

connected to two other policy gateways, one in each transit domain. AD T1 and AD T2 each contained

at most two policy gateways, each policy gateway connected to the other and to a policy gateway in

the source or destination domain. This internetwork topology provided two distinct inter-domain routes

between AD S and AD D, allowing us to experiment with various component failure and transit policy

reconfiguration scenarios in the transit domains.

For the first set of experiments, we configured transit policies for AD T1 and AD T2 that were

devoid of access restrictions. We then initialized each policy gateway in our internetwork, loading in the

domain-specific configurations and starting up the IDPR processes. In our experiments, we did not use

mapping servers; instead, we configured address/domain mapping tables in each policy gateway.

After policy gateway initialization, we observed that each policy gateway immediately determined

the connectivity to policy gateways in its own domain and in the adjacent domains. The representative

policy gateway in each domain then generated a routing information message that was received by all

other policy gateways in the internetwork.

10



Proposed Standard IDPR March 1992

To test the route generation and path setup functionality of the IDPR prototype software, we began a

telnet session between a host in AD S and a host in AD D. We observed that the telnet traffic prompted

the path agent resident in the policy gateway in AD S to request a policy route from its route server.

The route server then generated a policy route and returned it to the path agent. Using the policy route

supplied by the route server, the path agent initiated path setup, and the telnet session was established

immediately.

Having confirmed that the prototype software satisfactorily performed the basic IDPR functions, we

proceeded to test the software under changing network conditions. The first of these tests showed that

the IDPR prototype software was able to deal successfully with a component failure along a path. To

simulate a path component failure, we terminated the IDPR processes on a policy gateway in the transit

domain, AD T1, traversed by the current path. The policy gateways on either side of the failed policy

gateway immediately detected the failure. Next, these two policy gateways, representing two different

domains, each issued a routing information message indicating the connectivity change and each initiated

path teardown for its remaining path section.

Once the path was torn down, the path agent agent in AD S requested a new route from its route

server, to carry the existing telnet traffic. The route server, having received the new routing information

messages, proceeded to generate a policy route through the other transit domain, AD T2. Then, the path

agent in AD S set up a path for the new route supplied by the route server. Throughout the component

failure and traffic rerouting, the telnet session remained intact.

At this point, we restored the failed policy gateway in AD T1 to the functional state, by restarting its

IDPR processes. The restored policy gateway connectivity prompted the generation and distribution of

routing information messages indicating the change in domain connectivity.

Having returned the internetwork topology to its initial configuration, we proceeded to test that the

IDPR prototype software was able to deal successfully with transit policy reconfiguration. The current

policy route carrying the telnet traffic traversed AD T2. We then reconfigured the transit policy for

AD T2 to preclude access of traffic travelling from AD S to AD D. The transit policy reconfiguration

prompted both the distribution of routing information advertising the new transit policy for AD T2 and

the initiation of path teardown.

Once the path was torn down, the path agent in AD S requested a new route from its route server, to

carry the existing telnet traffic. The route server, having received the new routing information message,

proceeded to generate a policy route through the original transit domain, AD T1. Then, the path agent in

AD S set up a path for the new route supplied by the route server. Throughout the policy reconfiguration

and rerouting, the telnet session remained intact.

11



Proposed Standard IDPR March 1992

This set of experiments, although simple, tested all of the major functionality of the IDPR prototype

software and demonstrated that the prototype software could quickly and accurately adapt to changes in

the internetwork.

6.1.3 Performance Analysis

We (USC and SAIC members of the IDPR development group) evaluated the performance of the path

setup and message forwarding portions of the IDPR prototype software. For path setup, we measured

the amount of processing required at the source path agent and at intermediate policy gateways during

path setup. For message forwarding, we compared the processing required at each policy gateway when

using IDPR forwarding with IP encapsulation and when using only IP forwarding. We also compared

the processing required when no integrity/authentication value was calculated for the message and when

the MD4 digital signature algorithm was employed.

Our performance measurements were encouraging, but we have not listed them here. We emphasize

that although we tried to produce efficient software for the IDPR prototype, we were not able to devote

much effort to optimizing this software. Hence, the performance measurements for the IDPR prototype

software should not be blindly extrapolated to other implementations of IDPR. To obtain a copy of

the performance measurements for path setup and message forwarding in the IDPR prototype software,

contact Robert Woodburn (woody@sparta.com) and Deborah Estrin (estrin@usc.edu).

6.2 The gated Version

The SAIC and BBN members of the IDPR development group, who previously worked on the IDPR

prototype, are now nearing completion of the task of integrating IDPR into the gated UNIX process.

The gated version of IDPR contains the full functionality of IDPR together with a simple yet versatile

user interface for IDPR configuration. As a single process, the gated version of IDPR should per-

form more efficiently than the multiple-process prototype version. The central respository for the gated

IDPR software is cseic.saic.com; to obtain a copy of the current software, contact Robert Woodburn

(woody@sparta.com).

Once completed, the gated version of IDPR will be freely available to the Internet community.

Hence, anyone with a UNIX-based machine can experiment with IDPR, without investing any money or

implementation effort. By making IDPR widely accessible, we can begin to gain Internet experience by

introducing IDPR into operational networks with real usage constraints transporting host traffic with real

service requirements.

12


